use#OAP FROM NAVIER-STOKES TO EINSTEIN

نویسندگان

  • Cynthia Keeler
  • Vyacheslav Lysov
  • Irene Bredberg
چکیده

We show by explicit construction that for every solution of the incompressible Navier-Stokes equation in p + 1 dimensions, there is a uniquely associated “dual” solution of the vacuum Einstein equations in p + 2 dimensions. The dual geometry has an intrinsically flat timelike boundary segment Σc whose extrinsic curvature is given by the stress tensor of the Navier-Stokes fluid. We consider a “near-horizon” limit in which Σc becomes highly accelerated. The near-horizon expansion in gravity is shown to be mathematically equivalent to the hydrodynamic expansion in fluid dynamics, and the Einstein equation reduces to the incompressible Navier-Stokes equation. For p = 2, we show that the full dual geometry is algebraically special Petrov type II. The construction is a mathematically precise realization of suggestions of a holographic duality relating fluids and horizons which began with the membrane paradigm in the 70’s and resurfaced recently in studies of the AdS/CFT correspondence. ar X iv :1 10 1. 24 51 v2 [ he pth ] 1 4 Ja n 20 11

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

Further investigation on the validity of Stokes±Einstein behaviour at the molecular level

Stokes±Einstein behaviour at the molecular level is investigated by simulating water at di€erent temperatures and by simulating `water' models with di€erent mass distributions. When combining Stokes' law for the viscosity with Einstein's formula for the di€usivity, an expression for the product of these quantities is obtained, which shows that the product of di€usivity and viscosity should be i...

متن کامل

Flow Analysis Heat and Mass Transfer in a Room

This reports the study on the flow behaviour, heat transfer and contamination distribution in a room. For this purpose the 3-D incompressible Navier-Stokes equations, energy equation and a mass transfer equation which model the concentration of contamination have been applied. For turbulence simulation the two equation standard k-  turbulence model was employed. By means of SIMPLE algorithm the...

متن کامل

Relationship between diffusion, self-diffusion and viscosity

We investigate the experimental limits of validity of the Stokes–Einstein equation. There is an important difference between diffusion and self-diffusion. The experimental evidences show, that in the case of selfdiffusion the product Dg/T is constant and the Stokes–Einstein equation is still valid. On the other hand, comparison of existing experimental data, on viscosity g and diffusion coeffic...

متن کامل

A comparative study between two numerical solutions of the Navier-Stokes equations

The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011