use#OAP FROM NAVIER-STOKES TO EINSTEIN
نویسندگان
چکیده
We show by explicit construction that for every solution of the incompressible Navier-Stokes equation in p + 1 dimensions, there is a uniquely associated “dual” solution of the vacuum Einstein equations in p + 2 dimensions. The dual geometry has an intrinsically flat timelike boundary segment Σc whose extrinsic curvature is given by the stress tensor of the Navier-Stokes fluid. We consider a “near-horizon” limit in which Σc becomes highly accelerated. The near-horizon expansion in gravity is shown to be mathematically equivalent to the hydrodynamic expansion in fluid dynamics, and the Einstein equation reduces to the incompressible Navier-Stokes equation. For p = 2, we show that the full dual geometry is algebraically special Petrov type II. The construction is a mathematically precise realization of suggestions of a holographic duality relating fluids and horizons which began with the membrane paradigm in the 70’s and resurfaced recently in studies of the AdS/CFT correspondence. ar X iv :1 10 1. 24 51 v2 [ he pth ] 1 4 Ja n 20 11
منابع مشابه
Optimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملFurther investigation on the validity of Stokes±Einstein behaviour at the molecular level
Stokes±Einstein behaviour at the molecular level is investigated by simulating water at dierent temperatures and by simulating `water' models with dierent mass distributions. When combining Stokes' law for the viscosity with Einstein's formula for the diusivity, an expression for the product of these quantities is obtained, which shows that the product of diusivity and viscosity should be i...
متن کاملFlow Analysis Heat and Mass Transfer in a Room
This reports the study on the flow behaviour, heat transfer and contamination distribution in a room. For this purpose the 3-D incompressible Navier-Stokes equations, energy equation and a mass transfer equation which model the concentration of contamination have been applied. For turbulence simulation the two equation standard k- turbulence model was employed. By means of SIMPLE algorithm the...
متن کاملRelationship between diffusion, self-diffusion and viscosity
We investigate the experimental limits of validity of the Stokes–Einstein equation. There is an important difference between diffusion and self-diffusion. The experimental evidences show, that in the case of selfdiffusion the product Dg/T is constant and the Stokes–Einstein equation is still valid. On the other hand, comparison of existing experimental data, on viscosity g and diffusion coeffic...
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011